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Investigation of the interactions between two
contact fibers in the fiber suspensions
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A mathematical model was constructed for the mechanical interactions between two
contact fibers, based on which numerical simulations were performed and the results are in
good accordance with the experiments. The settling fiber begins to slide at earlier time and
the entire interaction duration diminishes as the initial position of the contact point, the
initial orientation of fiber and the fiber specific weight increase or the solvent viscosity
decreases. Both the slipping start-up time and the departing time delay as the fiber aspect
ratio increases, however, the effect caused by reducing the diameter is more significant
than that caused by increasing the length. Finally, a synthetic parameter which can
uniquely describe the start-up time and the finishing time of the sliding motion of the fibers
was derived. C© 2003 Kluwer Academic Publishers

Nomenclature
an Axial acceleration of the contact point
at Transverse acceleration of the contact point
aε Relative acceleration of the center to the

contact point, equals to ω̇s
A Synthetic parameter
�F(s) Line density of the Stokes force acting on

the fluid by a fiber
�Fc Contact force
Fdrag Drag acting on the fiber, equals to ηv

Fn Normal component of contact force
Ft Tangential component of contact force
Fx Tangential component of the Stokes force
Fy Normal component of the Stokes force
G Difference of gravitation and buoyancy
I Moment of inertia about the fiber center
l Half length of fiber
L Length of fiber
L0 Characteristic length of fiber
m Torque acting on the fiber
M Mass of fiber
�n A unit vector normal to both fibers
�p Orientation of fiber, a unit vector
Py Component of �p, equals to cos θ

R Radius of fiber
Ro Radius at the fiber center
Rs Radius of fiber at position s
R0 Characteristic radius of fiber
S Position along the fiber

∗Author to whom all correspondence should be addressed.

Sc Position of contact point
S0 Position of initial contact point
υ Velocity at contact point
�υo Translational velocity of the fiber
�υ induce Induced velocity by fixed fiber
−→
υ∞ Undisturbed velocity at �x
�x Vector of position
�x 0 Position of fiber center
�δ Kronecker operator
ε A quantity equals to [log(2l/R0)]−1

η Coefficient of drag
θ Angle between fiber axis and horizontal
θ0 Initial angle between fiber axis and

horizontal
µ Solvent dynamic viscosity
ν Solvent kinematic viscosity
ν0 Characteristic solvent viscosity
ρ Specific weight of fiber
ρ0 Characteristic specific weight of fiber
ϕ Aspect ratio of fiber
ω Angular velocity of fiber
ω̇ Angular acceleration of fiber
−→
� Vector of angular velocity of fiber

Subscript
c Contact point
1 Fiber 1
2 Fiber 2
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1. Introduction
The behavior of fibers in a flow affects the process-
ing of composite materials or paper making. When
the fiber concentration is higher, interactions between
fibers have a profound effect on the microstructure of
a suspension, and hence on its macroscopic properties.
The presence of mechanical contacts between the fibers
increases significantly the effective stress of the suspen-
sion. Numerical simulations indicated that the effec-
tive viscosity is enhanced due to mechanical contacts
between the fibers [1]. Mechanical contacts between
fibers could also give rise to many nonlinear rheolog-
ical characteristics such as finite normal stress differ-
ences [2], yield stress [3], rod climbing [4] and shear
thinning.

There have been some experimental research on the
interactions between fibers. Andersson and Rasmuson
[5] measured the friction of pulp and synthetic fibers in
both air and water, and observed that the sliding fiber
alternately sticks and slides as it was pulled upward, a
behavior known as “stick-slide.” Modifications of the
classical, single-parameter law relating frictional resis-
tance to normal force were found to improve agreement
with experimental results. Stick-slip behavior and de-
viations from classical friction laws were also found by
Lee [6] in measurements of interfacial shear strength
of 25–35 µ diameter silica fibers. Zeng et al. [7] de-
termined the friction coefficient governing contact be-
tween a sedimenting sphere and a neutrally buoyant
sphere. Petrich and Koch [8] investigated the nature
of the forces involved in mechanical contact between
fibers in a fluid and the interaction between a poly-
meric fiber settling under the influence of gravity and
a fixed strand of the same material, and the static coef-
ficient of friction was found to be 0.38 ± 0.06 which is
in good agreement with published data. Chaouche and
Koch [9] examined the influence of adhesive contacts
between fibers on rheology of suspension.

The interactions between fibers play an important
role for the properties of fiber suspensions, in which the
process and duration of interactions are crucial. There-
fore, it is necessary to investigate the factors affecting
the process and duration of interactions, these factors
include the initial contact point, the aspect ratio and
specific weight of fiber, the solvent viscosity. It is espe-
cially meaningful to generalize a synthetic parameter
to describe the total interaction duration of the fibers.
To the author’s knowledge these important feature of
fiber interactions have not been yet reported. The aim
of this study is to construct a mathematical model for
the mechanical interaction between two contact fibers,
shed light on the effects of the fiber initial conditions,
the fiber aspect ratio, specific weight and the solvent
viscosity on the interactions between the fibers, and
derive a synthetic parameter to describe the interaction
duration of the fibers by performing numerical simula-
tions.

2. Mathematical model
An illustration of the contact problem for two fibers is
given in Fig. 1. One fiber is horizontally fixed and an-
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Figure 1 Side view of fiber interaction, with fixed fiber oriented perpen-
dicular to the page.

other fall from a very short distance above the fixed one.
The track of the settling fiber can be represented by the
profiles of Py and Sc. The settling fiber’s orientation is
denoted by the unit vector �p. After contact, the settling
fiber pivoted about the initial contact point. The fiber
rotated in this manner until the tangential component of
the gravitational force overcame static friction, so that
the fiber began to slide along the horizontal fiber while
rotating.

We are interested in the problem at small Reynolds
numbers for the settling fiber (less than 1 × 10−3).
Therefore, inertial can be neglected and the forces im-
posed on the settling fiber are assumed to be gravity, hy-
drodynamic Stokes drag [10] (including the long-range
disturbance caused by the fixed fiber), and a contact
force �Fc, which prevents the fibers from penetrating
each other and provides a frictional resistance to the
sliding motion.

According to Batchelor’s slender-body theory [10],
the velocity at the surface of the fiber is the superposi-
tion of the fluid’s undisturbed velocity and the disturbed
velocity due to the presence of the fiber which is in as-
sociation with the Stokes force. Thus, for an isolated
fiber, we have [11]:

�υo + [ �� × s �p]

= �υinduce( �xo + s �p) + �υ∞( �xo + s �p)

= 1

4πµ

(
1

ε
+ ln

(1 − s2)
1
2

Rs/R0

)
(�δ + �p �p) · �F(s)

+ (�δ − 3 �p �p)· �F(s) + (�δ + �p �p)·
∫ 1

−1

F̄(s ′) − �F(s)

|s − s ′| ds ′

+ �υ∞( �xo + s �p) (1)

The line density of the Stokes force acting on the fluid
by the fiber, �F(s), can be then solved from Equation 1.

However, the presence of the horizontally fixed fiber
will give rise to an additional disturbed velocity, hence
we need to combine the integral equations of the two
fibers. Denoting the settling fiber as 1 and the fixed fiber
as 2, we write the combined equations as follows:

�υo1 + [ ��1 × s1 �p1]

= 1

4πµ

(
1

ε
+ ln

(
1 − s2

1

) 1
2

Rs/R0

)
(�δ + �p1 �p1) · �F1(s1)

+ 1

8πµ
(�δ − 3 �p1 �p1) · �F1(s1)
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+ (�δ + �p1 �p1) ·
∫ 1

−1

F̄1(s ′
1) − �F1(s1)

|s1 − s ′
1|

ds ′
1

+
∫ 1

−1
H ( �xo2 + s2 �p2 − �xo1 − s1 �p1) · �F2(s2)ds2

+ �υ∞( �xo1 + s1 �p1)�υo2 + [ ��2 × s2 �p2]

= 1

4πµ

(
1

ε
+ ln

(
1 − s2

2

) 1
2

Rs/R0

)
(�δ + �p2 �p2) · �F2(s2)

+ 1

8πµ
(�δ − 3 �p2 �p2) · �F2(s2)

+ (�δ + �p2 �p2) ·
∫ 1

−1

F̄2(s ′
2) − �F2(s2)

|s2 − s ′
2|

ds ′

+
∫ 1

−1
H ( �xo1 + s1 �p1−�xo2 − s2 �p2) · �F1(s1)ds1

+ �υ∞( �xo2 + s2 �p2) (2)

where H is a tensor function:

H ( �x) = 1

8πµ

( �δ
| �x | + �x �x

| �x |3
)

After discretization of the combined integral Equa-
tions 2 using Gauss-Legendre integral formulation, we
obtain a set of linear algebra equations for the densities
of the Stokes force on all Gauss points. By integrating
these discrete forces, the resultant Stokes force as well
as a torque about the center can be obtained. We decom-
pose the resultant force into a tangential component Fx

and a normal component Fy .
The settling fiber experiences two different stages.

Firstly, it only pivots about the fixed fiber and secondly,
it slides along the fixed fiber while rotating about it.

Fig. 2 shows the motion of the settling fiber and all
forces on it in the first stage. Fx , Fy and m can be
obtained through Gauss numerical integration method
demonstrated above.

The dynamic equations of the settling fiber are:

G sin θ + Fx − Ft = −Mω2s

G cos θ − Fy − Fn = Mω̇ · s

m + Fns = I ω̇


 (3)

where I = M R2/4 + M L2/3. From Equation 3,
ω̇, Fn, Ft can be determined and then we can judge
whether the fiber will begin to slide from the values of
Fn and Ft .
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Figure 2 The motion of fiber and forces acting on the fiber in the first
stage.
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Figure 3 The motion of the fiber in the second stage.
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Figure 4 The forces on the fiber in the second stage

The fiber motion condition in the second stage is
illustrated in Fig. 3. Fig. 4 shows all forces on the fiber.
The fiber dynamic equations are as follows:

G sin θ − Fx − Ft = M(at − ω2s)

G cos θ − Fy − Fn = M(an + ω̇ · s)

m + Fns = Iεω̇


 (4)

There are five variables but only three equations
in (4). Taking into account the frictional equation
Ft = µFn + F0 we need one more equation. By analyz-
ing the variation of velocity of the contact point c during
a very small time step dt , we obtain an approximate for-
mulation for its transverse acceleration an = υω. Thus
we can determine ω̇ and at from these five equations.

However, we should consider something more in our
model. First, the slender-body theory regards the fiber
that has a certain transverse dimension as a filament of
zero thickness. Hence, the force obtained from Equa-
tion 2 has unavoidable errors. This finite transverse di-
mension of the fiber will result in a drag that is pro-
portional to the fiber’s longitudinal velocity. Second,
when the two fibers approach very closely, there exist
lubrication interactions between them, which are also
proportional to the relative velocity between two fibers.
Therefore, it is reasonable to incorporate an additional
drag term Fdrag = ηv into our model.

From above analyses, once the initial contact posi-
tion and angular velocity of the settling fiber are given,
we can determine the fiber motion at any time, includ-
ing its velocity and displacement In Fig. 5, the solid
lines represent the numerical results and the symbols
◦ (Py) and × (Sc) represent the experimental results.
The fiber used in experiments is cellulose acetate pro-
pionate with the length of 3 mm and the diameter of
80 µm and the density of 1.222 × 103 kg/m3. The fluid
is silicon oil with the viscosity of 20 cSt and the den-
sity of 0.95 × 103 kg/m3. In this study, we set η to be
1.24 × 10−4.
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Figure 5 Comparison of the calculated results with the experiment ones.

3. Results and discussion
3.1. Effect of fiber initial conditions on the

process of interaction
Fig. 6 shows the results for different initial contact po-
sitions S0, and Fig. 7 for different fiber initial angle
between axis and horizontal θ0.

From Fig. 6 and Fig. 7, we can see that the settling
fiber begins to slide at earlier time and the entire inter-
action duration diminishes as θ0 or S0 increases.

The orientation angles of the settling fiber at the time
when it departs from the fixed fiber (referred to as
departing angle) under different initial conditions are
listed in Table I, which shows that the departing an-
gle decreases as S0 increases, but it largely remains the
same when θ0 varies in the range 0–300.

We find that the results are basically independent of
the initial angular velocity of the settling fiber. Thus
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Figure 6 The results for the different positions of initial contact point
of fibers.
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Figure 7 The results for the different fiber initial angle between axis and
horizontal.

TABLE I The case under different initial conditions

S0 0.05 l 0.10 l 0.15 l 0.20 l 0.25 l 0.30 l

Departing angle (◦) 71.75 71.37 70.73 69.84 68.72 67.36
ϑ0 0 10 15 20 25 30

Departing angle (◦) 71.37 71.37 71.37 71.37 71.44 71.75

we can conclude that it is not the initial velocity but
the initial position that has an appreciable effect on the
subsequent interaction process.

3.2. Effect of fiber aspect ratio on the
process of interaction

Different aspect ratios of the fiber ϕ = L/R can be
obtained by either changing the diameter of the fiber
or the length. The results obtained by changing the
length at the fixed radius of fiber R = 40 µm are de-
picted in Fig. 8 and those obtained by varying the
diameter at the fixed length 2l = 3 mm are shown in
Fig. 9.

The starting times of the slipping motion, the finish-
ing times (departing time) and the departing angles for
both cases are listed in Table II, in which ϕl and ϕr rep-
resent aspect ratio when changing the fiber length and
diameter respectively.

We can see that both the slipping start-up time and the
departing time delay as the fiber aspect ratio increases,
no matter whether it is caused by increasing the length
or by decreasing the diameter. Nevertheless, the effect
caused by varying the diameter is more significant and
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Figure 8 Results for different aspect ratios of the fiber by changing the
fiber length only.
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Figure 9 Results for different aspect ratios of the fiber by changing the
fiber diameter only.

the delay rate seems higher at a higher aspect ratio,
whereas it seems higher at a lower aspect ratio in case
of varying the diameter. Therefore, the fiber aspect ratio
ϕ is not an independent parameter for the interaction
process.

3.3. Effect of solvent viscosity and fiber
density on the interaction process

The results for different fiber specific weight and dif-
ferent solvent viscosities are shown in Figs 10 and 11
respectively.

The slipping start-up times, the departing times and
the departing angles for both cases are listed in Table III.
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Figure 10 Results for different fiber specific weight (103 kg/m3).

0 10 20 30 40 50 60 70
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

ν=45cSt

ν=20cSt

ν=25cSt

ν=30cSt

ν=35cSt

ν=40cSt

s

Sc

 

0 10 20 30 40 50 60 70
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ν=45cSt

ν=20cSt

ν=30cSt

ν=25cSt

ν=35cSt

ν=40cSt

s

Py

 
Figure 11 Results for different solvent viscosities (1cSt = 0.01, St =
0.01cm2/s).
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T ABL E I I The case for different aspect ratios of the fiber

ϕl 30 35 40 45 50 55 60

Start-up (slipping) time (s) 8.90 9.91 10.89 11.86 12.80 13.73 14.64
Departing time (s) 24.13 26.89 29.58 32.22 34.80 37.34 39.84
Departing angle (◦) 71.34 71.36 71.37 71.39 71.40 71.41 71.42
ϕr 30 35 40 45 50 55 60

Slipping start-up time (s) 7.12 9.25 11.62 14.23 17.07 20.13 23.42
Departing time (s) 19.30 25.09 31.56 38.66 46.40 54.77 63.75
Departing angle (◦) 71.34 71.36 71.37 71.39 71.40 71.41 71.42

T ABL E I I I The case for different fiber specific weight and different solvent viscosities

ρ 1.05 1.10 1.15 1.20 1.25 1.30 1.35

Slipping start-up time (s) 28.30 18.87 14.15 11.32 9.43 8.09 7.07
Departing time (s) 76.82 51.22 38.41 30.73 25.61 21.95 19.21
Departing angle (◦) 71.37 71.37 71.37 71.37 71.37 71.37 71.37

ν 20cSt 25cSt 30cSt 35cSt 40cSt 45cSt

Start-up(slipping) time (s) 10.40 13.00 15.61 18.21 20.81 23.41
Departing time (s) 28.24 35.31 42.37 49.43 56.49 63.55
Departing angle (◦) 71.37 71.37 71.37 71.37 71.37 71.37

It shows that the settling fiber begins to slip earlier
and departs from the fixed fiber earlier as the fiber spe-
cific weight increases or the solvent viscosity decreases,
but the departing angle is not affected by the fiber spe-
cific weight and the solvent viscosity.

3.4. The synthetic parameter containing the
properties of the fiber and the fluid

The length, radius, specific weight of the fiber and the
solvent viscosity are involved in the interactions be-
tween the fibers. We attempt to derive a synthetic pa-
rameter A which contains these quantities, allowing the
slipping start-up time to be expressed as t0 = f (A) and
the total duration of interaction between the fibers as
T = g(A).

We non-dimensionlize the length L , the radius R, the
fiber specific weight ρ and the solvent viscosity ν using
the characteristic quantities: L ′ = L/L0, R′ = R/R0,

T ABL E IV The results calculated using data in Table III

ν′ 1.0000 1.2500 1.5000 1.7500 2.0000 2.2500

Slipping start-up time (s) 10.40 13.00 15.61 18.21 20.81 23.41
Departing time (s) 28.24 35.31 42.37 49.43 56.49 63.55

�ν′ 1.00–1.25 1.25–1.50 1.50–1.75 1.75–2.00 2.00–2.25

Delay of start-up time (s) 2.60 2.61 2.60 2.60 2.60
Delay of the departing time (s) 7.06 7.06 7.06 7.06 7.06

T ABL E V The calculated results when half length L of the fiber changes

L ′ 0.8000 0.9333 1.0667 1.2000 1.3333 1.4667 1.6000

Slipping start-up time (s) 8.90 9.91 10.89 11.86 12.80 13.73 14.64
Departing time (s) 24.13 26.89 29.58 32.22 34.80 37.34 39.84

ν ′ = ν/ν0, ρ ′ = ρ/ρ0. Data in Table IV are calculated
using data in Table III.

From Table IV, we can see that the slipping start-up
time and the departing time change linearly with ν ′.
Therefore, we assume

A = ν ′l ′α

R′βρ ′γ (5)

Similarly we can calculate the slipping start-up time
and the departing time when the length L , the radius R
or the specific weight ρof the fiber change. The results
are shown in Tables V–VII.

Based on the results of Tables V–VII, we can obtain
the α, β and γ in the Equation 5, which then can be
written as:

A = ν ′L ′0.728

R′1.725ρ ′5.660
(6)

1504



T ABL E VI The calculated results when the radius R of the fiber changes

R′ 1.2500 1.0714 0.9375 0.8333 0.7500 0.6818 0.6250

Slipping start-up time (s) 7.12 9.25 11.62 14.23 17.07 20.13 23.42
Departing time (s) 19.30 25.09 31.56 38.66 46.40 54.77 63.75

T ABL E VII The calculated results when the specific weight ρ of the fiber changes

ρ′ 0.8592 0.9002 0.9411 0.9820 1.0229 1.0638 1.1047

Slipping start-up time (s) 28.30 18.87 14.15 11.32 9.43 8.09 7.07
Departing time (s) 76.82 51.22 38.41 30.73 25.61 21.95 19.21

From Equation 6, we can see that the specific weight of
the fiber has the largest effect on the interaction between
the fibers.

4. Conclusions
Based on the results and discussions above, the follow-
ing conclusions can be drawn:

(i) The initial position of the contact point S0 and the
initial orientation angle θ0 have significant effects on
the interaction process of two fibers. The settling fiber
begins to slide at earlier time and the entire interaction
duration diminishes as θ0 or S0 increases.
(ii) The fiber aspect ratio ϕ is not an independent pa-

rameter involving in the interaction between the fibers.
Both the slipping start-up time and the departing time
delay as the fiber aspect ratio increases, however, the ef-
fect caused by reducing the diameter is more significant
than that caused by increasing the length.
(iii) The settling fiber begins to slip earlier and departs
from the fixed fiber earlier as the specific weight of the
fiber increases or the solvent viscosity decreases, but
the departing angle is not affected by the fiber specific
weight and the solvent viscosity.
(iv) A synthetic parameter A is derived to uniquely de-

scribe the slipping start-up time and the total interaction
duration of the fibers.
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